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The purpose of {he present paper is to extend some basic results from functioi
algebras theory to the context of M-theory. Particularly we are able to prove
that Bishop-Silov decomposition still works in full capacity. That offers a satis-
factory explanation for the similaritics between approximation results in function
algebras theory, C*-algebra theory and convexity theory.

The basic idea behind our technical construction is as follows : If K is a compact
Hausdorff space then the closed ideals of C(K, €)arcina one-to-one correspondence
to the annihilators of closed subsets of K and moreover, if /57 = {/| fIH = 0}
is such an annihilator, then C(K, €)/Iy can be identified with C(J{, €) and the
canonical quotient mapping C(K, €) — C(X, €)/Iy is nothing but the restriction
mapping f — f|H. That fact is strongly related to Urysohn Lemma. Actually
most of our work can be viewed as a contribution to non-commutative topology.
Part of this work was communicated at the Colloquium on Ordered Topological
Spaces, Sinaia, in June 1991.

1. PRELIMINARIES ON FUNCTION ALGEBRAS

We survey in this section some basic facts on interpolation and
approximation in function algebra theory. The details will be found in
Gamelin [9] or Suciu [13]. :

Let K be a compact Hausdorff space. By a function algebra on
K we mean any closed subalgebra &/ of C(K, €) that contains the constants
and separates the points of K. An important example (beside C(K, C€))
is A(D), the Banach algebra of all analytic. functions on the unitdisc D,
that. admit a continuous extension to D.

The interpolation theory aims to outline the closed subsets H of

K on which the action of a given function algebra &/ can be well contro-
lled. To be more specific, put

H* ={f|fes, f{H = 0};
and
o |H = {f{H|fe A},

viewed as a subspace of C(H, €). The natural mapping T : &//H L.« H,
T(f\ = f|H for fe s, is an algebraic isomorphism whose norm is < 1.
We shali say that H is a set of strict interpolation with respect to & provided
that 7 is an isometry. e.g., this is the case if H is an intersection of
peak sets. Recall that a closed subset H of K is a peak set (With respect
to /) provided that there exists a function fe & such that flH =1 and
[fle)] <1 for o ¢ H.
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The definition of a strict interpolation set makes sense for any
closed subspace & of C(K, €). In this context the role of intersections of
peak subsets is played by frontal subsets. A closed subset H of K is called
a frontal set (with respect to &) provided that for every fe <, every neigh-
bourhood V of H and every couple (¢, 3) € R* X R¥*, there exists a function
f €« such that

JIH=Ff
sup o)) < sup [f(z)| + 3
sup [f(#)] < e
K\V

In section 3 we shall discuss a generalization of this concept based
on the following result:

1.1 LEMMA (See [4], p. 364). A closed subset H of a compact Hausdorff
space K 1s frontal (with respect to a closed subspace £ of C(K, €C)) if and
only if the mapping p. — yu-u from C(K, €)' into C(K, €)' leaves tnvariant
&/°, the polar of «.

A subset H of K is called a set of anti-symmetry of the function
algebra & provided that fe & and f 'H is a real function implies f|H is
constant. The function algebra & is called anti-symmetric provided that
K itself is a set of anti-symmetry.

The closure of a set of anti-symmetry is also a set of anti-symmetry.
Every maximal set of anti-symmetry is closed. Every point z € K belongs
to a maximal set of anti-symmetry.

1.2 DE BRANGES’ LEMMA. Let & be a function algebra on K and let
w be an extreme point of the unit ball of £°. Then Supp ., the support of
u, 18 @ set of anti-symmetry of <.

1.3 BISHOP-SILOV DECOMPOSITION. Let &f be a function algebra on
K. Then K admits a decomposition K = y K, where (K,), 1s the set
of all maeximal subsets of anti-symmetry of . Then K, n Kg = @ for
o # B and moreover. :

(a) | I, is a closed subspace of C(K,., €C) for every a«;
(b) fe C(K, @) belongs to o if and only if fIK,e | K, for every a.

In 1978, Paltineanu [11] extended the Bishop-Silov decomposition
by considering instead of function algebras & on K, closed subspaces of
C(K, €). In cection 4 we shall prove that Bishop-Silov decomposition
still works in the framework of M-structure theory.

2. REVIEW ON M-STRUCTURE THEORY

Roughly speaking, M-structure theory measures to what extent
a given Banach space behaves like a space of continuous on a compact
Hausdorff space (i.e. a Kakutani M-space with unit). In what follows we
review fome basic facts which we shall need in our approach toabstract
interpolation. We refer to [3] for a thorough presentation of M-structure
theory. See also [17], [2].
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. Let E be a Banach space. An idempotent P e L(E, E) is called
an L-projection provided that

lz|| = ||Pz|| + |l#¢ — Pa| for all € E.

‘The L-projections on E commute and thus they constitute a Boolean
algebra of projections on X (denoted by [PL(E)) by letting

PV Q=PI+ Q—PQ
P/\Q::PQ
Pt =1—P.

Actually [P.(E) is Bade complete ie., for every familly (P,). of
elements of [P.(E) there exist VP, and AP, in [P,(E) and moreover

(V P.)(E) = Span U Py(E)
(AP)E) = n PoE).

A closed subspace I of E is said to be an M-ideal provided that
its polar I° is the image of an L-projection on E’. I° can be the image of
at most one L-projection (usually denoted by P;). This is a consequence
of the following ;

9.1 Lemma Let P and Q be two projections of [PL(E') such that
Im P =1Im Q. Then P = Q.

Proof. In fact, for every « ¢ E there exists a y€ B such that Py =
= Qy. Then (I — @)Px = (I — @)@y = 0 and in the same manner we
can prove that (I — P)Q = 0. Since PQ = @P, it follows that P=QP =

It E is a C*-algebra then its M-ideals are precisely the closed two-
sided ideals. If E is an M-space then its M-ideals coincide with the closed
lattice ideals. See [2]. :

If E is the space A(K,[R) (of all continuous affine real functions
on a compact convex subset of a locally convex Hausdorif space) then
the M-ideals of E are the annihilators of the split faces of K. See [2],

If E is a Lindenstrauss space (i.e., if E’ is an L!-space), then the
M-ideals of E are the annihilators of the bifaces of the closed unit ball
of E'. See [2].

1f F is a function algebra on a compact metrizable space K, then
the M-ideals of E are exactly the annihilators of the peak sets. See [10].

We shall denote by M(E) the set of all M-ideals of a Banach space
E. The map I — P;, from M(E) onto [P.(Z’) is bijective and thus M(E)
can organized naturally as a Boolean algebra.

2.2 LemMa. (i) Every finite sum as well as every finite intersection
of M-ideals of B is still an M-ideal of B.
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(ii) If (I.)s is @ family of elemenis of M(E) then Span y I.€ M(E).

By Lemma 2.2. ii, every closed subspace of E contains a largest
M-ideal. .

In contrast to the situation for ideals in rings, arbitrary intersections
of M-ideals need not be an M-ideal. See [5]. We call a Banach space B
M-distinguished provided that M(E) is closed under arbitrary intersec-
tions. Examples are C*-algebras, M-spaces, G-spaces (see [14]), reflexive
Banach spaces, ete.

2.3 Lemma. Let I € M(E). Then : v

(i) The M-ideals of I are precisely the M-ideals of E that are contained
wn 1.

(ii) Let =;: E — E|I be the canonical mapping. Then wr' maps the
M-ideals of E|I into M-ideals of E.

(iii) The M-ideals of E|I are just the canonical images of the M-ideals
of E.

To any Banach space E one can associate two operator algebras.
The first one is the so-called Cunningham algebra,

C(B).— Span P4(B),

the closure being taken in the uniform topology of L(E, E). C(E) is a
commutative Banach algebra with unit 1, the identify of E. Also, C(E)
is algebraic and isometric isomorphic to C(Spec %, K), where Spec %
denotes the Stone space associated to # = [P,(F) and K denotes the field
of scalars. See Evans [8] for details. Particularly, C(F) is a Banach lattice,
possibly complex. If we denote by Re C(E) the closure of the finite real
combinations of elements of [P (E) the above isomorphism induces an
isomorphism

~#9 . Re O(B)= 0(SpecPu(E), R)-

The second algebra is the centralizer. It is the Banach subalgebra
Z(E) of L(E,E) consisting of all operators T e L(E, E) such that
T’ e O(E'). Z(E) is also a commutative Banach algebra with unit 1 and
each T e Z(E) leaves invariant every JM-ideal of E.

We define the real part of the centralizer by

Re Z(E) = {T|T' € Re C(E")}.
It is natural to consider on Re Z(E) the order relation
’ 8 <T in ReZ(E) if and only if 8’ <T’ in
Re C(E") = C(Spec P(E'), R)-

With respect to this order relation Re Z(E) becomes a C(S, R)-
space. Alfsen and Effros [2] have described the order relations on
Re C(E)and Re Z(E)viaorderrelations on E. We shall not enter the details
here. However it seems worthwhile to recall their basic remark.
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Consider on the Banach space E the L-order relation,
© <. y if and only it [y] =] +lly — «|.

Then 0 <S < T in Re C(E) if and only if Sx <, Tz for every
ze€ E. A consequence of this remark is the following

2.4 ProPOSITION. Let T € Re Z(E) such that 0 <T <I. Then Im T
is an M-ideal.

Proof. By hypothesis, 0 < T’ <I in Re C(E’). We have to show that
(Im 7)Y = Ker 7" is an L-summand. Since Re C(E’)=C(SpeclP.(E"), R),
there exists an increasing sequence (S,). of finite linear combinations
of [P.(E’) with positive coefficients such that ||Su — T’|| - 0. Then
Spx <, T'x for every xeFE and thus Ker T' < n Ker S, Actually
the equality holds because ||S, — 1"|| — 0.

Each Ker S, is a finite intersection of L-summands and every
. intersection of L-summands is still an L-summand, which ends the proof. Wl

In what follows we shall discuss the case of CO*-algebras # with
unit 1. In this case Z(%) coincides with the center of %,

Z(%) = {x|\xe¥ and xy = yx for every ye #«}.
and

Re Z(#) = {z\x€ U, —a-fI<w<a-1 for a suitable « > 0}.
Moreover, the operatorial norm on Reé Z(%) coincides with the norm '
o]l = inf {«| — a- <2z <o}

Re Z(%) constitutes a Banach lattice with strong order unit when endow-
ed with the order induced by Re #. Consequently Kakutani’s represen-
tation theorem applies to Re Z(#) and thus Re Z(%) can be viewed as
a O(S, [R)-space. The details of all above assertions are to be found in
Wils [15]. \

3. FRONTAL IDEALS

Our generalization of the notion of a frontal ideal is motivated by
Lemma 1.1 above.

In the sequel E will denote a Banach space, X and I closed sub-
spaces of ¥ and =;: E — EJ/I the canonical quotient mapping.

3.1 DeFINITION. An M-ideal I of E is said to be an (X-) frontal
ideal provided that the L-projection P, € L(E’, E’), whose image is I°,
leaves invariant X°.

By Lemma 1.1 above, a closed subset H of a compact Hausdorff
space K is frontal (with respect to a closed subspace X of C(K, C)) if
and only if I, the annihilator of H, is an X-frontal ideal of C(K, C).
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We shall denote by Fx(E) the set of all X-frontal ideals of E. Fy(E)
is simply M(E). If-I and J are in M(E), then I € F,(E); in fact, any two
L-projections commute. If 7€ M(E) and X is a closed subspace of E
such that X <« I or I « X then I € Fy(E).

Fx(E) is closed under finite sums and finite intersections. See Lemma
2.2 above.

Frontal ideals satisfy a weaker analogue of Tietze-Urysohn Extension
Theorem.

3.2 PrROPOSITION. Suppose that I is an X-frontal ideal of E and J
18 an M-ideal of E such that E =1 + J. Then for each xe€ X and each
e> 0 there exists an T € X such that

TT) = ()
12l <llm=(@) ]| + ¢
=D <e.

Proof. Notice first that X can be renormed by
1
el =max fisl, 1 w@i}-

Let X, be the closed unit ball of (X, || |||). Our next step is to prove the
following assertion : ;

(%) n(X,) is dense in {rm,(2)lze X, [n/(x)| <1}.
For, let f =/(X,)°. Then

f(md))] < max {nwn, L nmw)u} for v e X

and an easy consequence of Hahn-Banach extension theorem shows
that g = fo n;| X admits a decomposition g =g, + g, Where |g,(z) | <
<llz| and |gx(2)! <e - |Im ()| for all ze X.

Let f, and f, be linear extensions of ¢, and g, respectively to B
such that ||f,]| = llg,|l and [f,[| = [|g2[l. Then

() fer—fi—fe X°
and
(ii) faede.

Since I + J = E, from (ii) we infer that P,(f,) = P,P,(f,) = 0.
Since fom el° and P,(X°) = X°, we infer from (i) and (ii) that
for; — Pyf,) e X°. Then '

fla(X) = P,(f))| m(X)
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so that for every x e X with ||x,(x)]| < 1 we have

[ fm@)| = | Pfy) (mi(2) <N PALN<NAN <1

Consequently =,(X,) is dense in {n/(z) | e X, || 7(z)] <1} and assertion
(*) is proved.

To end the proof of Proposition 3.2, let x € X and let ¢ > 0. By
(x) there exists a y € X such that ||y|| <1, |7;(¥)] <e/2« and |7/ (z/a —
— %)]| < ¢/2a, where a = || =) (). Choose w € I such that

e — oy — auj < ¢/2
Then ¥ = x — au verifies the equality =,(Z)==,(«¢) and moreover

NEl <«llyll + Nz — cw — ayll <||m(@)]] + ¢
and

I7o(@)l| <llmsag)ll + o — au — ayl] <e. W

3.3 COROLLARY. Let I and J be two M-ideals of E such that E =I-J.
Then for each x € E and each € > 0 there exists an T € E such that -

7(F) = 7i()
NZl <llm(@)l| + ¢
7 (@) < e

In the sequel we shall make use of the fact that the restriction
to X of the canonical quotient mapping =,: E — E/I admits a natural
factorization ,

L, RI
X—X/X n I—a(X).

The mappings L, and R; are both continuous when X/X n I
is endowed with the quotient norm.

3.4 Definition. An M-ideal I of E is said to be a strict interpolating
subspace for X provided that the mapping R;: X/X n I — n,(X) men-
tionned above is an algebraic isometric isomorphism.

Since X/X n I is complete, it follows that =,(X) is a closed sub-
space of E|I whenever I is a strict interpolating subspace for X. Compare
to Theorem 1.3 a.

Quite obvious, I is a strict interpolating subspace for X if and
only if

7B N X) = m(B) N m(X),

where B.dEI.lOteS the open unit ball of E.
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We shall show that every X-frontal ideal is also a strict interpol-
ating ideal for X. We need to restate Definition 3.4 in a more convenient
form.

3.5 LEMMA. Let E be a Banach space and let B be ils open unit ball.
An M-ideal I of E ts an interpolation tdeal for X if and only if =/(B n X)
18 dense in w,(B) n w(X).

Proof. The necessity is clear.

The sufficiency. We shall prove first that

(%) 7, (371B) n n(X) = m(B n X).

Let y € ©;(371B) n my(X). Since =,(3*B n X) is dense in =,;(3*B) n
n m;(X), there exists an ;€ 37'B n X such that y — w«,) € =(372B).
Since w;(372B n X) is dense in mw,(372B) n m;(X), there exists an
v, €372B n X such that .y — = () — m, (%) € 7,(372B), and so on.
Consequently there exists a sequence (x,), of elements of E such that
z,€3™"B n X and

”

y — Y, mlz) € (3771 B)
k=1
for every n e [N*.
Since X/X n I is complete, the series ¥ L;(«,) is convergent to an

n=1

re X/X n I. E/I being separat‘ed‘and R; continuous, it follows that
R(Z) = Y, Rili(2,) = Y, mi@a) = .
n=1 n=1

The inclusion 3 L,(37'B n X) <« LB n X) yields ,
Li(3B n X)+ Li(371B n X) c LB n X).

Then i Lx)e L(3'B n X) + L,(371B n X) for every me[N* so
k=1
that Ze L (B n X).
Let e B n X such that L,(x) = Z. Then
Yy = R](f) == RILI(Q;) = n,(w) € TL'I(B n X)

which ends the proof of (#x).
By (+),

©

————
7(B) 0 m(X) < 7(B N X) c n(B N X) < m(B)nmf(X)

ie. m(B N X)=m,(B) N n(X) so that I is a strict interpolating ideal
for X. = EE Tt .
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3.6 THEOREM. Every X-frontal ideal I of E is also a strict interpola-
ting tdeal for X.

Proof. By Lemma 3.5, it suffices to show that
(m(B N X)P < (7(B) N = (X))

Let fe (n/(B n X))°. Then =;(f) e (B n X)° and thus there exists
a ge B° such that ¢ — =i(f) e X°.
Since 7;(f) e I°, we infer that (P; o w;)(f) = =}(f) and

Pig) — =i(f) = Pu(g — =i(f))e X° n I’

For every y e m)(B) n m,;(X) there exists #;€ B and x,¢ X such
that y = =, (%) = 7 (a,). Then

fy) = f(m(2)) = (Prlg))(@1) + (=1(f) — Pi(g))()) =
= (PAg))(#1) + (={f) — Pi(g))(,)

which shows that fe (=;(B) n =;(X)°. H&

3.7 COROLLARY. If I is an X-frontal ideal of B, then n,(X) is a closed
subspace of BJI.

3.8 COROLLARY. If I is an X-frontal ideal of E, then for every xc X
there ewxists ‘an T € X such that /(%) = n(x) and ||F| = | x,(z)] (t.e.,
X n I ws proximinal in X).

By Corollary 3.8, for every I € M(E), the canonical quotient map-
ping m;: B — E/I maps the closed unit ball of E onto the closed unit
ball of E/I. This fact was first noticed in [2]. See [1] for the complex
case.

Corollary 3.8 suggests that the result of Corollary 3.3 above might
be strengthen up to ||Z| = |w(@)]. :

The following result is an analogue of the fact that frontal subsets
of frontal subsets are frontal.

3.9 ProPOSITION. Let I and J be two M-ideals of E such that I < J
and I € Fx(E). Then J € Fx(E) if and only if J|I e Fryx)(E[I).

Proof. By Corollary 3.7 above, n,(X) is a closed subspace of EI.
Another useful remark is the equality =; - P,, = P, =} on (B[I).

. Suppose that J € Fx(E). Then for each ge (m(X))° we have
n;(9) € X° and thus (P, o w7)(g) € X° ie., (w° P,;)(g) € X°. Consequently
P,(g) € m(X)) ie., J[I is a m(X)-frontal ideal of E/I.

Conversely, suppose that that J/I is a =;(X)-frontal ideal and let
fe X°. Since I is a frontal ideal, P;(f)e X° and thus there exists a
g € (E[I) such that P,(f) = w;(g). Then g e (7,(X))° and P;/(g) € (m( X))
because J/I is a m,(X)-frontal ideal. Consequently (m;o P,,)(g)e X°
which yields

Py(f) = (Py o P)(f) = (P o m7)(g) = (n;° P,;p)(g) e X°
i.e., JEFx(.E)- |

9 — c. 3827
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4. THE BISHOP-SILOV DECOMPOSITION

We start with a natural generalization of the notion of a set of
anti-symmetry.

Let E be a complex Banach space and let X be a subspace of E.

4.1 Definition. An M-ideal I of E is said to be anti-symmetric with
respect to X, provided that every U e Re Z(E/[I) such that U(rn,(X))
c wi(X) is a multiple of 1g;.

For E a space C(K, €) and X a function algebra on K we retrieve
the notion of a set of anti-symmetry. )

We shall denote by & x(F) the set of all M-ideals of E, anti-symme-
tric with respect to X. Clearly,

A x(B) « L5(H).

The fact that every point belongs to a maximal set of anti-symmetry
has the following analogue in terms of M-structure theory.

42 LeMMA. Suppose that E is M-distinguished and let (I,). be a
family of elements of Ax(E) such that J = Span n I, # K. Then
I=n I, e Ax(E).

Proof. We start by noticing a canonical mapping relating to the
centralizers.

Let A and B be two M-ideals of E such that B < A. Then we can
consider the mapping .

M. : Z(B|B) — Z(E/A)
given by
Mpi(U)(ratw)) = mpa(Urns())

for all x€ A, where wp, makes commutative the diagram

A\

EjA——>E|B
TBA

Clearly, Mgz, maps Re Z(E/B) into Z(E|A).

, Now, let Ue Re Z(B/I) such that U(w/ (X)) = w(X). Then for
each- «, My (U) (71, (X)) = 7 (Uni(X)) = T (1 X)) = w7 (X). Since
I, #x(B), there exists an a,€ R such that My (U) = @. - g/, and
thus

MI'J(U) = (JJIlaID MIIG)(U) = 0y * 1E/J'
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As E[J # 0, it follows that a, = a3 = a for all « and B. Then
M]]a(U — a - 13/1) = 0 fOI' all o a/nd thllS U =a - 1E/I i.e., IGJJX(E).

4.3 COROLLARY. Suppose that E 4is M-distinguished. Then every
IeAdy(E), 1 # E, contarns a (unique) minimal ideal I, in o x(E).

Proof. In fact, I, = n{J |Je Ax(E), J=I}. N

We shall show that the set &/y(E) of all minimal anti-symmetric
ideals of E can be viewed as an analogue of Bishop-Silov decomposition.

Assertion (i) in Theorem 1.3 constitutes the objective of Corollary
4.5 below.

4.4 PROPOSITION. Suppose that E is M-distinguished and X is a closed
subspace of E. Then

o y(E)c Fx(B).

Proof. Let Ie€ Ax(E) and H = Span U {J|J € Fx(E), J < I}.
By Lemma 2.2ii, H ¢ Fx(E). We shall show that H = I.

If H # I, then H € o/ x(E) i.e., there exists a U € Re Z(E/H) such
that 0<U <1z4, U # 1lgy, Ul =1 and U(ny(X)) c 7h(X). We can
also assume that ||M(U)|| =1, where M = My, : Z(E/H) - Z(E[I)is
the map considered in the proof of Lemma 4.2. This can he done by
replacing U (if necessary) by a polynomial p(U ) of U where

0 < p(t) <1 for te [0,1], p(1) # 1 and p(|M(U)|) = 1.
Put )
L ={ylye E/H, lim U"y = 0}.

L is a closed subspace of E/H. In fact, let z€ L and let ¥ be an
open neighbourhood of 0 in E/H. Then there exists an x, € L such that
x — x, € ¥ . Since |U] <1, we infer that U"x — U"x, € ¥ for all n e [N.
Or, Uz, — 0, which yields « € L.

L # 0. In fact, since Z(E/H) can be though of as a C(S)-space,
NU*1gz — U)|| — 0. Let x € E/H such that Uz # . Then ||U*(lgy —
— )zl - 0 ie,  — Ure L\ {0}.

L=1Im (I — U). In fact, the inclusion Im (I — U) L is clear.
For the other inclusion, let '€ (Im (I — U)) = Ker (I — U’) and let
xze L. Then {(z’, ) = Uy, ) =<', U'x) — 0 ie., '€ L".

By Proposition 2.4 we infer that L is an M-ideal. The L-projection
onto L° is P = lim U'*. The fact that P is an L-projection follows from

[31, Propositionng.ll ii. Clearly, Im P < L°. For the other inclusion, let
#'e L° and xe E. Then

(' — U™y o) =<2’y I — U"a) -0
which shows that #’ = Pa’eIm P.

By Corollary 3.7, ny(X) is a closed subspace of E/H. Due to the
form of P, it follo ws that L is a w,(X)-frontal ideal of E/H.
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L is contained in I/H. In fact, since M(U)(w/(X)) = n(X) and
I e o 5x(E) it follows that M(U) = a-1p, for a suitable @ € R. Actually
a =1 because M(U)> 0 and ||[M(U)|| =1. Then M(U)* = 1z,, which
yields U"x — € I/H for every x € E/H and every n < [N. Since I/H is
closed and U"x — 0 for v € L, we conclude that L <« I/H.

By Lemma 2.3 ii and the above remarks, =;!(L) is an M-ideal of E
such that H z n; (L) < I. By Proposition 3.9, n;' (L)€ Fg(E), in con-
tradiction with the definition of H. Consequently H = I and the proof
is complete. | e

4.5 COROLLARY. If I € o x(E) then w; (X) is a closed subspace
of E|I. \

The following result extends de Branges’Lemma :

4.6 LEMMA. Let E be a Banach space, X a proper subspace of E and
f an extreme point of the unit ball of X°. Then the maximal M-ideal I con-
tained in Ker f is anti-symmetric with respect to X.

Proof. Let UeZ(E|I) such that 0 <U <1y, and U(r/ (X)) <
c m(X).

Since I<XKer f, there exists a unique g € (E/I)’ such that f=go x,
and |g|| = 1. Suppose that U'(g) # 0 and U’(g) # g. Then

9 gy £ T9)

— | U(@)]- Stie Sy
R e u— U]

which yields the following convex decomposition in X°.

> U")(9) oay FL— U9
=gom,=|U" 4 :
f=g 1o@= IlU Dl lg — T (gl g — U9l

Then f = (=7 U')¢)/|U'(g)|| ie., ¢ = U'(g)/||U'(g)|| and thus there exists
a real scalar A such that ()\I(E/,) — U')g) = 0.
To end the proof we shall show that

(%) VeZ(E[I) and V'(g) = 0 implies V = 0.
In fact, replacing V by V?2 if necessary, we may assume in addition

that 0 <V < 1z;. By the definition of I, there exists no M-ideal J # 0
contained in Ker g. Or, V'(g) = 0 yields Im V < Ker g and Im V is an
M-ideal. See Proposition 2.4 above. Consequently V = 0 and the asser-
tion (x) is proved. ’

By (x), U=Xx-1g, for a suitable A € R and thus I is anti-symmetric. M

We can now state the main result of our paper :

4.7 THEOREM. (Bishop-Silov decomposition for M-distinguished spa-
ces). Suppose that E is M-distinguished and X is a closed subspace of E.
Then

(i) =(X) ts @ closed subspace of E[L for every I e Ax(B);

(i) For every w=e b,

d(z, X) = sup {d(m,(@), ©(X))|I & x(E)}.



13 Interpolation and approximation ‘ 543

Proof. The assertion (i) follows from-Corollary 4.5 above.
- (ii) Clearly, the ‘non-trivial case is X # E. We shall denote by K
the closed unit ball of E’ and by Ext K the subset of all extreme points
of K. By Hahn-Banach Extension Theorem and Krein-Milman Theorem,

d(x, X) = sup {|z'(x I]xeKnl}———
=sup {|2'(x))| | 2’ € Ext (K n X°)}.

Let 2'e Ext (K n X°). By Lemma 4.6, the maximal M-ideal I
contained in Ker &’ belongs to & y(E). By Corollary 4.3, I contains an
ideal J € o/ x(E). Since J < Ker #’, there exists a unique functional
z"e€ (E/J) such that 2’ o n;, = «’. Then

|@'(@)| = [ (m,(2))] < d(my(@), 7,(X)).

The other inequality,

sup d(m,(z), m(X)) < d(z, X),

is obvious. H

It is important to comment the above results in the framework
of C*-algebras.

Let % be a C*-algebra and let Prim % be the set of all primitive
closed two sided ideals of %. Prim % can be endowed with the Jacobson
tepology, congisting of all complements of hulls (a hull being the set of
all primitive closed two-sided ideals containing some fixed closed two
sided ideal). Let C, (Prim %, [R) be the Banach space of all bounded con-
tinuous functions f: Prim % — [R endowed with the sup norm. By Lemma
4.6,

Prim % < (%)
which yields a natural one-to-one mapping
¢:Re Z(%) —» C, (Prim %, [R)

given by ®(U)(I) = a provided M, ,(U) = a-1p;. Actually @ is an
isomorphism. This fact is known as the Dauns-Hofmann Theorem. See
[7] for details.
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